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Abstract – Analytic characterizations of the posterior dis-

tribution of a random finite set of states, conditioned on im-

age observations are derived; under the assumption that the

regions of the observation influenced by individual states

do not overlap. These results provide tractable means to

jointly estimate the number of states and their values in the

Bayesian framework. As an application, we develop a multi-

object filter suitable for image observations with low signal

to noise ratio. A particle implementation of the multi-object

filter is proposed and demonstrated via simulations.

Keywords: Random sets, Multi-Bernoulli, Filtering, Im-
ages, Tracking, Track Before Detect.

1 Introduction
This paper investigates the problem of jointly estimating

the number of objects and their states from image observa-
tions. The copious amount of available image data renders
this so-called multi-object estimation problem an important
part of estimation theory and practice. In many applications
involving image data, the estimation is often performed on
data that has been preprocessed into point measurements.
Compressing the information on the image into a finite set
of points is efficient in terms of memory as well as computa-
tional requirements, and is very effective for a wide range of
applications [1, 5]. However, this approach may not be ad-
equate for applications with low signal to noise ratio as the
information loss incurred in the compression becomes sig-
nificant, and it is necessary to make use of all information
contained in the image(s).

We formulate the multi-object estimation problem in a
Bayesian framework by modelling the collection of states to
be estimated as a realization of a random finite set. The so-
lution to this problem is intractable in general, even for the
special case of superpositional measurement model where
the image observation is the sum of the observations gener-
ated by individual states and noise [6]. Hence, drastic but
principled approximations are needed. Under the assump-

tion that the regions of the image influenced by individual
states do not overlap, we derive closed-form expressions of
the posterior for certain classes of priors. These results are
applicable to non-superpositional measurement models. As
an application we develop a multi-object filter suitable for
applications involving image observations with low signal
to noise ratio. We also present a tracking example as proof-
of-concept for the proposed approach.

2 Multi-object estimation via images
Let x1, ..., xn ∈ X ⊆R

d denote the state (or parameter)
vectors, and let y = [y1, ...ym] denote the image observation
comprising an array of m pixel (or bin) values. The value
yi of the ith pixel can be a real number or a vector depend-
ing on the application. For example, in a greyscale image
each pixel value is a real number, whereas in a color image,
each pixel value is a 3-dimensional vector representing the
intensities of the three color channels. Given an image ob-
servation y, we consider the problem of jointly estimating
the number of states and their values.

We start by formulating a suitable representation of the
multi-object state and cast the estimation problem in a
Bayesian framework in subsection 2.1. The observation
model considered in this paper is then described in subsec-
tion 2.2, setting the scene for the main results in Section 3.

2.1 Multi-object Bayesian Inferencing
In the context of jointly estimating the number of states

and their values, the collection of states, referred to as the
multi-object state, is naturally represented as a finite set. The
rationale behind this representation traces back to a funda-
mental consideration in estimation theory–estimation error.
Without a meaningful notion of estimation error, the output
of an estimator has very little meaning. Simply stacking in-
dividual states into a single vector does not admit a satisfac-
tory notion of error as illustrated in Figures 1 and 2, with the
ground truth represented by the vector X and the estimate
represented by the vector X̂ . Intuitively, for the scenario
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in Figure 1, the estimate is correct but estimation error is
‖X − X̂‖ = 2. While this fundamental inconsistency can
be remedied by taking the minimum of the distance over all
permutations of the states i.e. minperm(X) ‖X − X̂‖ = 0,
there is a more serious problem. What is the error when
the estimated and true number of states are different, e.g.
the scenarios in Figure 2? A finite set representation of the
multi-object state, X = {x1, ..., xn}, admits a mathemati-
cally consistent notion of estimation error since distance be-
tween sets is a well understood concept.
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Figure 1: Hypothetical scenario showing a fundamental
inconsistency with vector representations of multi-object
states. Individual states are xy positions. How should the
multi-object state be represented?
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Figure 2: Hypothetical scenario showing a fundamental
inconsistency with vector representations of multi-object
states. Individual states are xy positions. How should the
error be assigned when the estimated number of objects is
incorrect?

In the Bayesian estimation paradigm, the state and mea-
surement are treated as realizations of random variables.
Since the (multi-object) state X is a finite set, the concept of
a random finite set (RFS) is required to cast the multi-object
estimation problem in the Bayesian framework. The space
of finite subsets of X does not inherit the usual Euclidean
notion of integration and density. Hence, standard tools for
random vectors are not appropriate for RFSs. Mahler’s Fi-
nite Set Statistics (FISST) provides practical mathematical

tools for dealing with RFSs [4, 5], based on a notion of in-
tegration and density that is consistent with point process
theory [12]. In recent years FISST has generated substantial
interest due to the developments of the Probability Hypoth-
esis Density (PHD) and Cardinalized PHD filters [4],[12],
[13], [8], [14].

Using the FISST notion of integration and density, the
posterior probability density π(·|y) of the multi-object state
can be computed from the prior π using Bayes rule

π(X|y) =
g(y|X)π(X)∫
g(y|X)π(X)δX

(1)

where g(y|X) is the probability density of the observation y
given the multi-object state X (the specifics of this density
is given in the next subsection), and∫

f(X)δX =
∞∑

i=0

1
i!

∫
f({x1, ..., xi})dx1 · · · dxi,

is the set integral of a function f taking F(X ), the space of
finite subsets of X , to the real line.

2.2 Multi-object likelihood function
The type of image observation considered in this work

is illustrated in Figure 3. Objects are assumed to be rigid
bodies that cannot overlap with each other. In ground tar-
get tracking, for example, the objects would be vehicles or
stationary objects that must be physically separated.

overlapping

non-overlapping

Figure 3: An illustration of overlapping and non-
overlapping objects.

An object with state x illuminates a set of pixels denoted
by T (x), for example T (x) could be the set of pixels whose
centers fall within certain distance from the position of the
object. A pixel i ∈ T (x), i.e. illuminated by an object with
state x, has value distributed according to ϕi(·, x), while a
pixel i /∈ T (x), i.e. not illuminated by any object, has value
distributed according to φi(·). More concisely, the probabil-
ity density of the value yi of pixel i, given a state x is

p(yi|x) =
{

ϕi(yi, x), i ∈ T (x)
φi(yi), i /∈ T (x) . (2)
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For example, in track-before-detect (see [10] Chapter 11),

φi(yi) = N (yi; 0, σ)
ϕi(yi, x) = N (yi; hi(x), σ)

where hi(x) is the contribution to pixel i from the state x,
which depends on the point spread function, target loca-
tion and reflected energy. Note that (2) also holds for non-
additive models, see for example [3].

Under the following assumptions:

• conditional on the multi-object state, the values of the
pixels are independently distributed, and

• the regions of influences of the objects on the image do
not overlap, i.e. x �= x′ ⇒ T (x) ∩ T (x′) = ∅,

the probability density of the observation conditional on the
multi-object state X is given by

g(y|X) =

⎛
⎝∏

x∈X

∏
i∈T (x)

ϕi(yi, x)

⎞
⎠
⎛
⎝ ∏

i/∈∪x∈XT (x)

φi(yi)

⎞
⎠,

= f(y)
∏
x∈X

gy(x) (3)

where

gy(x) =
∏

i∈T (x)

ϕi(yi, x)
φi(yi)

,

f(y) =
∏m

i=1
φi(yi).

We refer to multi-object likelihood function of the form (3)
as separable.

3 Analytic characterization of the
multi-object posterior

This section presents analytic characterizations of the
multi-object posterior distribution for the observation model
in the previous section and three classes of multi-object
priors, namely Poisson, independently and identically dis-
tributed (i.i.d.) cluster, and multi-Bernoulli. These multi-
object priors are described next in subsection 3.1 along with
a summary of the mathematical tools used in this work. The
main results are presented in subsection 3.2.

3.1 Probability generating functionals
Apart from the probability density, the probability gener-

ating functional (PGFl) is another fundamental descriptor of
an RFS. Following [2, 4], the probability generating func-

tional (PGFl) G[·] of an RFS X on X is defined by

G[h] ≡ E[hX ], (4)

where E denotes the expectation operator, h is any real-
valued function on X such that 0 ≤ h(x) ≤ 1, and
hX ≡∏

x∈X h(x), with h∅ = 1 by convention.

The cardinality (number of elements) of X , denoted as
|X|, is a discrete random variable whose probability gen-

erating function PGF G(·) can be obtained by setting the
function h in the PGFl G[·] to a constant z. Note the dis-
tinction between the PGF and PGFl by the round and square
brackets on the argument. The probability distribution ρ of
the cardinality |X| is the Z-transform of the PGF G(·).

The Probability Hypothesis Density (PHD), also known
in point process theory as an intensity function, is a first-
order statistical moment of an RFS, which can be obtained
by differentiating the PGFl [2, 4]. For an RFS X on X , its
PHD is a non-negative function v on X such that for each
region S ⊆ X

E [|X ∩ S|] =
∫

S

v(x)dx, (5)

In other words, the integral of v over any region S gives the
expected number of elements of X that are in S. The local
maxima of the PHD are points in X with the highest local
concentration of expected number of elements, and can be
used to generate estimates for the elements of X .

It has been shown in [7] that two simple multi-object es-
timators based on the (posterior) PHD and cardinality dis-
tribution are Bayes optimal. In the first Bayes optimal esti-
mator, the estimated number of states, N̂ , is determined by
rounding the PHD mass

∫
v(x)dx, and the estimated states

are chosen to be the N̂ highest maxima of the PHD v. The
second Bayes optimal estimator the same as the first except
that the estimated number of states is the maximum a poste-
riori estimate.

The RFS pertinent to our key results and their PGFls are
summarized in the following.

Poisson: A Poisson RFS X on X is one that is completely
characterized by its PHD or intensity function v [2]. The
cardinality (number of elements) of a Poisson RFS is Pois-
son with mean 〈v, 1〉, where 〈v, h〉 denotes the standard in-
ner product

∫
v(x)h(x)dx, and for a given cardinality the

elements of X are each independent and identically dis-
tributed with probability density v/ 〈v, 1〉. The PGFl of a
Poisson RFS is

G[h] = e〈v,h−1〉, (6)

I.I.D. cluster: An independent and identically distributed

(i.i.d.) cluster RFS X on X is completely characterized
by a cardinality distribution ρ and a PHD v that satisfy∑∞

n=0 nρ(n) = 〈v, 1〉 [2]. For a given cardinality, the el-
ements of an i.i.d. cluster RFS X are each i.i.d. with prob-
ability density v/ 〈v, 1〉. The PGFl G[·] of an i.i.d. cluster
RFS is given by

G[h] = G

( 〈v, h〉
〈v, 1〉

)
, (7)

where G(·) is the probability generating function of the car-
dinality |X|, i.e. the inverse Z-transform of ρ. Note the
distinction between the square brackets for functional and
round brackets for function.
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Multi-Bernoulli: A multi-Bernoulli RFS X on X is a
union of a fixed number of independent RFSs X(i) that
has probability 1 − r(i) of being empty, and probability
r(i) ∈ (0, 1) of being a singleton whose (only) element is
distributed according to a probability density p(i) (defined
on X ), [5]

X =
⋃M

i=1
X(i). (8)

Each X(i) is called a Bernoulli RFS. Using the indepen-
dence of the X(i)’s, the PGFl of a multi-Bernoulli RFS is
given by

G[h] =
∏M

i=1

(
1 − r(i) + r(i)〈p(i), h〉

)
. (9)

A multi-Bernoulli RFS is thus completely described by the
multi-Bernoulli parameters {(r(i), p(i))}M

i=1. The parameter
r(i) is the existence probability of the ith object while p(i)

is the probability density of the state conditional on its exis-
tence. For convenience PGFl of the form (9) is abbreviated
by {(r(i), p(i))}M

i=1. The term multi-Bernoulli is also used
to mean a PGFl or a probability density of a multi-Bernoulli
RFS.

Since, the PHD of a multi-Bernoulli is given by

v(x) =
∑M

i=1
r(i)p(i)(x), (10)

and the cardinality of a multi-Bernoulli RFS is a dis-
crete multi-Bernoulli random variable with parameters
r(1), ..., r(M), Bayes optimal estimators based on the PHD
and cardinality distribution are applicable. Moreover,
a more intuitive multi-object estimator can be obtained
from the existence probabilities r(i)’s (and p(i)’s). Given
{(r(i), p(i))}M

i=1, similar to the PHD-based estimator, the
estimated number of states, N̂ , is determined by round-
ing arg max ρ. However, the estimated states are chosen to
be the N̂ means (or modes) of the probability densities in
{(r(i), p(i))}M

i=1 with highest existence probabilities.

3.2 Closed form data-updates
We first present a result concerning the posterior PGFl

for the observation likelihood considered in this work (see
subsection 2.2), which allows, with surprising simplicity, the
posterior distribution for Poisson, i.i.d. cluster, and multi-
Bernoulli RFS to be characterized analytically.

Proposition 1: Suppose that X is a random finite set on

X , with prior PGFl G and y is a vector observation of X

with separable likelihood function, i.e.

g(y|X) = f(y)gX
y .

Then the posterior PGFl G[·|y] of X given y is

G[h|y] =
G[hgy]
G[gy]

Proof: Let p and p(·|y) denote the prior and posterior
probability densities. Applying the definition of the PGFl

and using Bayes rule to obtain the posterior probability den-
sity p(·|y) gives

G[h|y] =
∫

hXπ(X|y)δX

=
∫

hXg(y|X)π(X)δX∫
g(y|X ′)π(X ′)δX ′

=
f(y)

∫
[hgy]Xπ(X)δX

f(y)
∫

gX′
y π(X ′)δX ′

=
G[hgy]
G[gy]

.�

For a Poisson RFS prior, which is completely character-
ized by the PHD, the following result shows how the PHD is
updated with the observation y, i.e. how the posterior PHD
is computed from the prior and observation.

Corollary 1: Under the premise of Proposition 1, if the

prior distribution of X is Poisson with PHD v, then the pos-

terior distribution is also Poisson with PHD v(·|y) given by

v(x|y) = v(x)gy(x)

Proof: Since X is Poisson with PHD v, its PGFl is given
by G[h] = e〈v,h−1〉. Using Proposition 1,

G[h|y] =
G[hgy]
G[gy]

=
e〈v,hgy−1〉

e〈v,gy−1〉

= e〈v,hgy−gy〉 = e〈vgy,h−1〉.

Thus, the posterior is Poisson with PHD vgy �.
A weaker result has been established in [9] where it was

shown that the posterior PHD is proportional to vgy . Corol-
lary 1 shows that the posterior PHD is equal to vgy, and that
the posterior RFS is Poisson. This result can be generalized
to i.i.d. cluster RFSs that are completely characterized by
the PHD and cardinality distribution as follows:

Corollary 2: Under the premise of Proposition 1, if the

prior distribution of X is i.i.d. cluster with PHD v, and car-

dinality distribution ρ, then the posterior is also i.i.d. cluster

with PHD v(·|y) and cardinality distribution ρ(·|y) given by

v(x|y) = v(x)gy(x)

∞∑
i=0

(i+1)ρ(i+1)

〈v,1〉i+1 〈v, gy〉i

∞∑
j=0

ρ(j)
( 〈v,gy〉

〈v,1〉
)j

(11)

ρ(n|y) =
ρ(n)

( 〈v,gy〉
〈v,1〉

)n

∞∑
j=0

ρ(j)
( 〈v,gy〉

〈v,1〉
)j

(12)

Proof: Since X is i.i.d. cluster with intensity v and car-
dinality distribution ρ, its PGFl is

G[h] = G

( 〈v, h〉
〈v, 1〉

)
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where G(z) =
∑∞

j=0 ρ(j)zj is the PGF of the cardinality of
X . Using Proposition 1,

G[h|y] =
G[hgy]
G[gy]

=
G
( 〈vgy,h〉

〈v,1〉
)

G
( 〈v,gy〉

〈v,1〉
)

=

∞∑
n=0

ρ(n)
( 〈vgy,h〉

〈v,1〉
)n

∞∑
j=0

ρ(j)
( 〈v,gy〉

〈v,1〉
)j

=

∞∑
n=0

ρ(n)
( 〈v,gy〉

〈v,1〉
)n ( 〈vgy,h〉

〈vgy,1〉
)n

∞∑
j=0

ρ(j)
( 〈v,gy〉

〈v,1〉
)j

(13)

where eq. (13) follows from the identity 〈v, gy〉 = 〈vgy, 1〉.
To establish that the posterior RFS is indeed an i.i.d. cluster
with PHD (11) and cardinality distribution (12), we need
to show that the posterior PGFl has the form G[h|y] =
G
(

〈v(·|y),h〉
〈v(·|y),1〉

∣∣∣ y). Note from (11) that 〈vgy,h〉
〈vgy,1〉 = 〈v(·|y),h〉

〈v(·|y),1〉
(since the quotient of the infinite sums cancel), hence sub-
stituting for 〈vgy,h〉

〈vgy,1〉 in (13) and using (12) gives

G[h|y] =
∞∑

n=0

ρ(n)
( 〈v,gy〉

〈v,1〉
)n

∞∑
j=0

ρ(j)
( 〈v,gy〉

〈v,1〉
)j

( 〈v(·|y), h〉
〈v(·|y), 1〉

)n

=
∞∑

n=0

ρ(n|y)
( 〈v(·|y), h〉
〈v(·|y), 1〉

)n

= G

( 〈v(·|y), h〉
〈v(·|y), 1〉

∣∣∣∣ y
)

.

Therefore, the posterior is an i.i.d. cluster process with PHD
(11) and cardinality distribution (12) �.

Remark: The posterior PHD (11) and cardinality distribu-
tion (12) were obtained by differentiating the posterior PGFl
G[·|y] and PGF G(·|y) respectively. However, for the proof
of Corollary 2, it is not necessary to show these steps.

Corollary 1 is a special case of Corollary 2 where the car-
dinality is Poisson distributed. Whereas Corollaries 1 and 2
characterize the posterior distribution by the PHD and car-
dinality distribution, the following result characterizes the
posterior distribution by a set of existence probabilities and
probability densities.

Corollary 3: Under the premise of Proposition 1, if the

prior distribution of X is multi-Bernoulli with parameter set

{(r(i), p(i)}N
i=1, then the posterior is also multi-Bernoulli,

with parameter set

{(
r(i)

〈
p(i), gy

〉
1 − r(i) + r(i)

〈
p(i), gy

〉 ,
p(i)gy〈
p(i), gy

〉
)}N

i=1

(14)

Proof: Since X is a multi-Bernoulli, with parameter set
{(r(i), p(i)}N

i=1, its PGFl is given by G[h] =
∏N

i (1− r(i) +

r(i)
〈
p(i), h

〉
). Using Proposition 1,

G[h|y] =
G[hgy]
G[gy]

=

N∏
i=1

(1 − r(i) + r(i)
〈
p(i), hgy

〉
)

N∏
i=1

(1 − r(i) + r(i)
〈
p(i), gy

〉
)

=
N∏

i=1

(
1 − r(i) + r(i)

〈
p(i)gy, h

〉
1 − r(i) + r(i)

〈
p(i), gy

〉
)

=
N∏

i=1

(
1 − r(i)

〈
p(i), gy

〉
1 − r(i) + r(i)

〈
p(i), gy

〉
+

r(i)
〈
p(i), gy

〉
1 − r(i) + r(i)

〈
p(i), gy

〉
〈

p(i)gy〈
p(i), gy

〉 , h

〉)

The ith term in the above product is the PGFl of a Bernoulli
RFS. Hence, the posterior is a multi-Bernoulli, with param-
eter set given by (14) �.

Remark: Each of the corollaries above can be easily ex-
tended to the multiple sensor case, as long as the likelihood
functions of the sensors are separable. The posterior param-
eters can be iteratively computed by updating the prior pa-
rameters with sensor 1, then treating the updated parameters
as the prior parameters and updating this with sensor 2, and
so forth. This procedure is repeated until the list of sensors
is exhausted. Since the updates are exact, the end result is
independent of the order in which the updates are done.

4 Multi-object filtering with image
data

This section considers the multi-object filtering problem
for image data. Unlike the static setting in the previous sec-
tion, the multi-object state evolves in time and generates an
image observation at each sampling instance. Hence, not
only do the values of the states evolves but the number of
states also evolves due to objects appearing or disappearing.
Multi-object filtering involves the on-line estimation of the
multi-object state from collected data.

In what follows, we use the multi-Bernoulli update in the
previous section (Corollary 3) to develop a multi-object fil-
tering algorithm for image observation. The filtering for-
mulation and the proposed multi-object filter is described
in subsection 4.1 while the particle implementation is de-
scribed in subsection 4.2. Similar algorithms can be devel-
oped using the PHD update (Corollary 1) or i.i.d. cluster up-
date (Corollary 2). However, since the observation model is
highly non-linear, particle implementations are employed to
approximate the PHD, and clustering is needed to extract the
estimated states from the particles. The clustering step in-
troduces an additional source of error as well as being com-
putationally expensive [12]. The multi-Bernoulli approach
avoids this problem altogether [15].

4.1 Multi-Bernoulli filter for image data
The multi-object filtering problem can be cast as a Bayes

filter on the space of finite sets F(X ). Let πk(·|y1:k) denote
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the multi-object posterior density at time k. Then, the multi-

target Bayes recursion propagates πk(·|y1:k) in time [4, 5]
according to the following prediction and update steps:

πk|k−1(Xk|y1:k−1) =
∫

fk|k−1(Xk|X)πk−1(X|y1:k−1)δX (15)

πk(Xk|y1:k) =
gk(yk|Xk)πk|k−1(Xk|y1:k−1)∫
gk(yk|X)πk|k−1(X|y1:k−1)δX

, (16)

where the integrals above are set integrals, fk|k−1(·|·) is the
multi-object transition density, from time k − 1 to k, and
gk(·|·) is the multi-object likelihood at time k.

The multi-object transition density fk|k−1(·|·) encapsu-
lates the underlying models of motions, births and deaths.
A popular multi-object transition model is the following.
Given a multi-object state Xk−1 at time k − 1, each xk−1

in Xk−1 either continues to exist at time k with probabil-
ity pS,k(xk−1) and moves to a new state xk with prob-
ability density1 fk|k−1(xk|xk−1), or dies with probability
1 − pS,k (xk−1). Thus, given a state xk−1 at time k − 1, its
behaviour at time k is modeled by the Bernoulli RFS

Sk|k−1(xk−1)

with r = pS,k(xk−1) and p(·) = fk|k−1(·|xk−1). The multi-
object state Xk at time k is given by the union

Xk =
⋃

xk−1∈Xk−1

Sk|k−1(xk−1) ∪ Γk, (17)

where Γk denotes the multi-Bernoulli RFS of spontaneous
births. Assuming that the RFSs constituting the union in
(17) are mutually independent, Xk is a multi-Bernoulli RFS
conditional on Xk−1. Using FISST, the multi-object tran-
sition density fk|k−1(·|·) can be derived from the transition
equation (17) [4, 5].

Since objects do not overlap in the image, it is necessary
that the multi-object transition model assigns zero likelihood
to multi-object states that contain overlapping objects. More
concisely fk|k−1(X|X ′) = 0 if there exist distinct x1 and
x2 ∈ X such that T (x1)∩ T (x2) �= ∅. However, assuming
that the objects occupy relatively small regions of the image,
the standard multi-object transition model above serves as a
reasonable approximation.

The Bayes recursion (15)-(16) is generally intractable.
However, under the assumption that the extents of the ob-
jects in the image are small, the predicted multi-object den-
sity, πk|k−1(·|y1:k−1) is a multi-Bernoulli if πk−1(·|y1:k−1) is
a multi-Bernoulli [5]. Moreover, by Corollary 3, the updated
multi-object density πk(·|y1:k) is also a multi-Bernoulli if
the objects do not overlap. Hence the prediction step (15)
and update step (16) can be approximated via the following:

Multi-Bernoulli Prediction: Given the posterior multi-

Bernoulli parameters pk−1 = {(r(i)
k−1, p

(i)
k−1)}Mk−1

i=1 ,at time

1The same notation is used for multi-object and single-object densities.
There is no danger of confusion since for single-object the arguments are
vectors whereas for multi-object the arguments are finite sets.

k − 1, the predicted multi-Bernoulli parameters are

πk|k−1 ={(r(i)
P,k|k−1, p

(i)
P,k|k−1)}

Mk−1
i=1 ∪ {(r(i)

Γ,k, p
(i)
Γ,k)}MΓ,k

i=1 ,
(18)

where

r
(i)
P,k|k−1 = r

(i)
k−1〈p(i)

k−1, pS,k〉, (19)

p
(i)
P,k|k−1(x) =

〈fk|k−1(x|·), p(i)
k−1pS,k〉

〈p(i)
k−1, pS,k〉

, (20)

fk|k−1(·|ζ) = single target transition density at

time k, given previous state ζ,

pS,k(ζ) = probability of target existence at

time k, given previous state ζ,

{(r(i)
Γ,k, p

(i)
Γ,k)}MΓ,k

i=1 = parameters of the multi-Bernoulli

RFS of births at time k.

Multi-Bernoulli Update: Given the predicted multi-

Bernoulli parameters {(r(i)
k|k−1, p

(i)
k|k−1}

Mk|k−1
i=1 , the updated

multi-Bernoulli parameters are

πk ={(r(i)
k , p

(i)
k )}Mk|k−1

i=1 (21)

where

r
(i)
k =

r
(i)
k|k−1

〈
p
(i)
k|k−1, gy

〉
1 − r

(i)
k|k−1 + r

(i)
k|k−1

〈
p
(i)
k|k−1, gy

〉 (22)

p
(i)
k =

p
(i)
k|k−1gy〈

p
(i)
k|k−1, gy

〉 . (23)

Track merging (heuristic): To account for the non-
overlapping assumption, estimates that would overlap on the
image observation are merged. A simple way of merging is
to combine the existence probabilities r

(i)
k ’s, and densities

p
(i)
k ’s of hypothesized objects whose estimates fall within a

given distance Tmerge of each other.

4.2 Sequential Monte Carlo Implementation
In the following, we present a generic sequential Monte

Carlo (SMC) implementation of the multi-Bernoulli predic-
tion (18) and update (21) steps.

SMC Prediction [15]: Suppose that at time k − 1 the
(multi-Bernoulli) posterior multi-object density πk−1 =
{(r(i)

k−1, p
(i)
k−1)}Mk−1

i=1 is given and each p
(i)
k−1, i =

1, ..., Mk−1, is comprised of a set of weighted samples

{w(i,j)
k−1 , x

(i,j)
k−1}

L
(i)
k−1

j=1 , i.e.

p
(i)
k−1(x) =

∑L
(i)
k−1

j=1
w

(i,j)
k−1δ

x
(i,j)
k−1

(x).

Then, given proposal densities q
(i)
k (·|xk−1, yk) and

b
(i)
k (·|yk), the predicted (multi-Bernoulli) multi-object
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density (18) can be computed as follows

r
(i)
P,k|k−1 = r

(i)
k−1

∑L
(i)
k−1

j=1
w

(i,j)
k−1pS,k(x(i,j)

k−1),

p
(i)
P,k|k−1(x) =

∑L
(i)
k−1

j=1
w̃

(i,j)
P,k|k−1δx

(i,j)
P,k|k−1

(x),

r
(i)
Γ,k = parameter given by birth model,

p
(i)
Γ,k(x) =

∑L
(i)
Γ,k

j=1
w̃

(i,j)
Γ,k δ

x
(i,j)
Γ,k

(x),

where

x
(i,j)
P,k|k−1 ∼ q

(i)
k (·|x(i,j)

k−1 , yk), j = 1, ..., L
(i)
k−1

w
(i,j)
P,k|k−1 =

w
(i,j)
k−1fk|k−1(x

(i,j)
P,k|k−1|x(i,j)

k−1)pS,k(x
(i,j)
k−1)

q
(i)
k (x(i,j)

P,k|k−1|x(i,j)
k−1 , yk)

,

w̃
(i,j)
P,k|k−1 = w

(i,j)
P,k|k−1/

∑L
(i)
k−1

j=1
w

(i,j)
P,k|k−1

x
(i,j)
Γ,k ∼ b

(i)
k (·|yk) j = 1, ..., L

(i)
Γ,k

w
(i,j)
Γ,k =

pΓ,k(x(i,j)
Γ,k )

b
(i)
k (x(i,j)

Γ,k |yk)
,

w̃
(i,j)
Γ,k = w

(i,j)
Γ,k /

∑L
(i)
Γ,k

j=1
w

(i,j)
Γ,k .

SMC Update: Suppose that at time k the pre-
dicted (multi-Bernoulli) multi-object density πk|k−1 =

{(r(i)
k|k−1, p

(i)
k|k−1)}

Mk|k−1
i=1 is given and each p

(i)
k|k−1, i =

1, ...,Mk|k−1, is comprised of a set of weighted samples

{w(i,j)
k|k−1, x

(i,j)
k|k−1}

L
(i)
k−1

j=1 , i.e.

p
(i)
k|k−1 =

∑L
(i)
k|k−1

j=1
w

(i,j)
k|k−1δx

(i,j)
k|k−1

(x).

Then, the updated (multi-Bernoulli) multi-object density
(21) computed as follows

r
(i)
k =

r
(i)
k|k−1	

(i)
k

1 − r
(i)
k|k−1 + r

(i)
k|k−1	

(i)
k

p
(i)
k =

1

	
(i)
k

∑L
(i)
k|k−1

j=1
w

(i,j)
k|k−1gyk

(x(i,j)
k|k−1)δx

(i,j)
k|k−1

(x),

where 	
(i)
k =
∑L

(i)
k|k−1

j=1 w
(i,j)
k|k−1gyk

(x(i,j)
k|k−1).

Resampling and Implementation Issues: Like the
MemBer filter [15], for each hypothesized object, the parti-
cles are resampled after the update step, the number of par-
ticles is reallocated in proportion to the probability of exis-
tence, as well as restricted between a maximum of Lmax and
minimum of Lmin. To reduce the growing number of tracks
(and particles), objects with existence probabilities below a
threshold P are discarded.

4.3 Simulation study
In this section, we demonstrate the performance of the

filter proposed in Section 4.2 on a tracking example with a
time varying number of targets observed in noise. Each tar-
get illuminates a square set of pixels with homogenous pixel
values. A maximum of 10 targets appears on the scene at
various instants. The true trajectories are shown in Figure 4
along with the start and stop positions of each track.
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Figure 4: True target trajectories in the surveillance region.

The target state variable xk = [ x̃T
k , ωk ]T comprises the

planar position and velocity x̃T
k = [ px,k, ṗx,k, py,k, ṗy,k ]T

as well as the turn rate ωk. A nearly constant turn model
having varying turn rate is considered:

x̃k = F (ωk−1)x̃k−1 + Gwk−1

ωk = ωk−1 + Δuk−1

where

F (ω) =

⎡
⎢⎢⎣

1 sin ωΔ
ω 0 − 1−cos ωΔ

ω
0 cos ωΔ 0 − sin ωΔ
0 1−cos ωΔ

ω 1 sin ωΔ
ω

0 sin ωΔ 0 cos ωΔ

⎤
⎥⎥⎦, G =

⎡
⎢⎢⎣

Δ2

2 0
T 0
0 Δ2

2
0 Δ

⎤
⎥⎥⎦,

wk−1 ∼ N (·; 0, σ2
wI), uk−1 ∼ N (·; 0, σ2

uI), Δ =
1s, σw = 20m/s2, and σu = 2π/180rad/s. The
birth process is multi-Bernoulli with density πΓ =
{(r(i)

Γ , p
(i)
Γ )}4

i=1 where r
(1)
Γ = r

(2)
Γ = 0.02, r

(3)
Γ = r

(4)
Γ

= 0.03, p
(i)
Γ (x) = N (x; m(i)

γ , Pγ), m
(1)
γ = [ −

1500, 0, 250, 0 0 ]T , m
(2)
γ = [ − 250, 0, 1000, 0 0 ]T ,

m
(3)
γ = [ 250, 0, 750, 0 0 ]T , m

(4)
γ = [ 1000, 0, 1500, 0 0 ]T ,

Pγ =
(
0.25diag([ 50, 50, 50, 50, 6(π/180) ]T )

)2. The
probability of target survival is pS,k(x) = 0.9.

The surveillance region is a 4000m× 4000m square (see
Figure 4) divided into 500 × 500 pixels or bins (each bin is
a square of side 8m). The observation at time k is a noisy
image yk with the ith pixel value given by

yi,k =
{

hi,k(x) + wi,k, i ∈ T (x)
wi,k, i /∈ T (x)
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where T (x) is a 3pixel × 3pixel square with the central pixel
containing the position of x, wi,k ∼ N (·; 0, 1), hi,k(x) =√

2, giving a 3dB SNR.
The simulation uses a maximum of Lmax = 5000 and

minimum of Lmin = 1000 particles per hypothesized track.
Tracks with existence probabilities less than P = 10−3 are
dropped. The merge threshold is set to Tmerge = 0.5 times
the pixel width.

4.3.1 Multi-object miss-distance
We use the Optimal Sub-Pattern Assignment (OSPA) dis-

tance between the estimated and true multi-object state as
the estimation error since it jointly captures differences in
cardinality and individual elements between two finite sets
in a mathematically consistent yet intuitively meaningful
way [11].

An intuitive construction of the OSPA distance between
two finite sets X = {x1, . . . , xm} and Y = {y1, . . . , yn}
is as follows. The set X with the smaller cardinality is ini-
tially chosen as a reference. Determine the assignment be-
tween the m points of X and points of Y , that minimizes
the sum of the distances, subject to the constraint that dis-
tances are capped at a preselected maximum or cut-off value
c (100m in our example). This minimum sum of distances
can be interpreted as the “total localization error”, which
are assigned by giving the points in X the “benefit of the
doubt”. All other points which remain unassigned are also
charged with an error value, where each extraneous point is
penalized at the maximum or cut-off value c. These errors
can interpreted as “cardinality errors” which are “penalized
at the maximum rate”. The “total error” committed is then
the sum of the “total localization error” and the “total car-
dinality error”. Remarkably, the “per target error” obtained
by normalizing “total error” by n (the larger cardinality of
the two given sets) is a proper metric [11]. In other words
the “per target error” enjoys all the properties of the usual
distance that we normally take for granted on a Euclidean
space.

A formal statement of the OSPA metric is now shown.
The OSPA metric d̄

(c)
p is defined as follows. Let

d(c)(x, y) := min (c, ‖x − y‖) for x, y ∈ X , and Πk denote
the set of permutations on {1, 2, . . . , k} for any positive in-
teger k. Then, for p ≥ 1, c > 0, and X = {x1, . . . , xm}
and Y = {y1, . . . , yn},

d̄(c)
p (X,Y ) :=

(
1
n

(
min
π∈Πn

m∑
i=1

d(c)(xi, yπ(i))p + cp(n−m)

))1
p

(24)
if m ≤ n, and d̄

(c)
p (X, Y ) := d̄

(c)
p (Y,X) if m > n; and

d̄
(c)
p (X,Y ) = d̄

(c)
p (Y, X) = 0 if m = n = 0.

The OSPA distance is interpreted as a p-th order per-target
error, comprised of a p-th order per-target localization error
and a p-th order per-target cardinality error. The order pa-
rameter p determines the sensitivity of the metric to outliers,
and the cut-off parameter c determines the relative weighting
of the penalties assigned to cardinality and localization er-

rors. When p = 1, the OSPA distance can be interpreted ex-
actly as the sum of the “per-target localization error” and the
“per-target cardinality error”. For further details see [11].

4.3.2 Numerical results
Figure 5 plots the x and y components of the true trajec-

tories, and filter estimates versus time. The plots indicate
that the filter is able to identify all target births and deaths,
as well as successfully estimating their states. The esti-
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Figure 5: True tracks, and multi-object filter estimates for
the scenario with 3dB SNR.

mation error for the 3dB SNR scenario is shown in Figure 6
together with that of a 6dB SNR scenario (hi,k(x) = 2). The
filter shows good performance with location error in the or-
der of half the side length of the template T (x), i.e. around
12m for both scenarios. Although the total error is worst
in the 3dB SNR scenario, the filter works surprisingly well,
achieving a similar location error to the 6dB case, without
dropping any tracks (see also Figure 7).
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Figure 6: Multi-object estimation error for the 6dB and 3dB
SNR scenarios.
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Figure 7: True, and estimated number of targets for the 6dB
and 3dB SNR scenarios.

We stress that due to the assumption of non-overlapping
objects, the proposed filter does not handle target crossing,
and that our examples require accurate prior knowledge of
birth locations. The proposed approach can theoretically ac-
commodate more diffused birth densities. However, in im-
plementation, many more particles are required to avoid par-
ticle collapse because gy has a very narrow support. An aux-
iliary particle implementation might be more efficient.

5 Conclusion
While more comprehensive evaluations are needed, pre-

liminary simulations have demonstrated that the proposed
random finite set approach enabled a tractable solution to
the multi-object estimation problem for image data. There
are, however, a number of limitations of the proposed ap-
proach. The particle implementation suffers from particle
degeneracy due to the reweighting of the particles by a func-
tion with very small support. More efficient particle imple-
mentation and analytic implementation are two venues for
further work. Extending the proposed approach to accom-
modate overlapping objects is an important problem that has
wider applicability.
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